Otros disco duro

  1. #1
    ForoParalelo: Miembro Avatar de benlloch35
    Registro
    09 feb, 17
    Mensajes
    210
    Me gusta (Dados)
    9
    Me gusta (Recibidos)
    12

    disco duro

    Se que el disco duro funciona de manera binaria, con polaridad positiva y polaridad negativa.
    Cada trocito puede tener polaridad negativa o positiva. ¿que seria el trocito? Es decir, como seria un disco duro? entre trocitos hay algun espacio?
    es decir, entre os trozos hay algo que lo separa?

    explicame como va el tema, por favor, que tengo eld isco duro dañado y quiero aprender primero qué es el disco duro para luego entender en que consiste el daño que hay.

    cuando se dice que se divide en sectores, a que se refiere?

  2. #2
    Lee la biblia Avatar de Tanatos
    Registro
    28 mar, 17
    Mensajes
    52
    Me gusta (Dados)
    14
    Me gusta (Recibidos)
    4
    Demasiado complejo para este foro

  3. #3
    𝖠𝗎𝗍𝗈𝖡𝖺𝗇𝗇𝖾𝖽 Avatar de Bender84
    Registro
    20 ene, 17
    Ubicación
    C:\My Kingdom
    Mensajes
    7,017
    Me gusta (Dados)
    769
    Me gusta (Recibidos)
    1820
    https://es.wikipedia.org/wiki/Unidad_de_disco_duro


    Unidad de disco duro
    Para otros usos de este término, véase HD.
    Unidad de disco duro
    Unidad de disco rígido
    Hard drive-es.svg
    Partes de la unidad de disco duro.
    Se conecta a
    controlador de disco (en las actuales PC, suele estar conectado en la placa madre y es de vital importancia), mediante uno de estos sistemas:
    Interfaz SATA
    Interfaz SAS
    Interfaz SCSI (popular en servidores)
    Interfaz FC (exclusivo en servidores)
    Interfaz USB
    NAS, mediante uno de estos sistemas:
    redes de cable / inalámbricas
    Fabricantes comunes
    Fujitsu
    Hitachi
    Samsung
    Seagate
    Western Digital
    [editar datos en Wikidata]
    En informática, la unidad de disco duro o unidad de disco rígido (en inglés: Hard Disk Drive, HDD) es el dispositivo de almacenamiento de datos que emplea un sistema de grabación magnética para almacenar archivos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos. Es memoria no volátil.

    El primer disco duro fue inventado por IBM, en 1956. A lo largo de los años, han disminuido los precios de los discos duros, al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para computadoras personales, desde su aparición en los años 1960.1 Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.1

    Los tamaños también han variado mucho, desde los primeros discos IBM hasta los formatos estandarizados actualmente: 3,5 pulgadas los modelos para PC y servidores, y 2,5 pulgadas los modelos para dispositivos portátiles. Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizada. Los más comunes hasta los años 2000 han sido IDE (también llamado ATA o PATA), SCSI (generalmente usado en servidores y estaciones de trabajo). Desde el 2000 en adelante ha ido masificándose el uso de los SATA. Existe además FC (empleado exclusivamente en servidores).

    Para poder utilizar un disco duro, un sistema operativo debe aplicar un formato de bajo nivel que defina una o más particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del sistema de archivos o formato empleado. Además, los fabricantes de discos duros, unidades de estado sólido y tarjetas flash miden la capacidad de los mismos usando prefijos del Sistema Internacional, que emplean múltiplos de potencias de 1000 según la normativa IEC e IEEE, en lugar de los prefijos binarios, que emplean múltiplos de potencias de 1024, y son los usados por sistemas operativos de Microsoft. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan confusiones, por ejemplo un disco duro de 500 GB, en algunos sistemas operativos será representado como 465 GiB (es decir gibibytes; 1 GiB = 1024 MiB) y en otros como 500 GB.

    Índice [ocultar]
    1 Historia
    2 Estructura lógica
    3 Estructura física
    3.1 Direccionamiento
    3.2 Factor de Forma
    4 Características de un disco duro
    5 Conectores
    5.1 Tipos de conexión de datos
    5.1.1 IDE, ATA o PATA
    5.1.2 SATA
    5.1.3 SCSI
    5.1.4 SAS
    5.2 Fuente de alimentación
    6 Funcionamiento mecánico
    6.1 Integridad
    7 Mantenimiento y cuidado
    8 Galería de imágenes
    9 Presente y futuro
    9.1 Comparativa de SSD y HDD
    9.1.1 Discos que no son discos
    9.2 Unidades híbridas
    10 Fabricantes
    11 Véase también
    11.1 Fabricantes de discos duros
    12 Referencias
    13 Bibliografía
    14 Enlaces externos
    Historia[editar]

    Antiguo disco duro de IBM (modelo 62PC, «Piccolo»), de 64,5 MB, fabricado en 1979.
    Al principio los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción de un hueco de ventilación para filtrar e igualar la presión del aire).

    El primer disco duro, aparecido en 1956, fue el Ramac I, presentado con la computadora IBM 350: pesaba una tonelada y su capacidad era de 5 MB. Más grande que un frigorífico actual, este disco duro trabajaba todavía con válvulas de vacío y requería una consola separada para su manejo.

    Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente constante entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.

    La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos durante años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.

    El mérito del francés Albert Fert y al alemán Peter Grünberg (ambos premio Nobel de Física por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, que permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60 % anual en la década de 1990.

    En 1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado 40 GB (40 000 MB). A la fecha (2017), ya se dispone de en el uso cotidiano con discos duros de más de 5 TB, esto es, 5000 GB (5 000 000 MB).

    En 2001 fue lanzado el iPod, que empleaba un disco duro que ofrecía una capacidad alta para la época. Junto a la simplicidad, calidad y elegancia del dispositivo, este fue un factor clave para su éxito.

    En 2005 los primeros teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia, aunque no tuvieron mucho éxito ya que las memorias flash los acabaron desplazando, debido al aumento de capacidad, mayor resistencia y menor consumo de energía.

    Véase también: Primeros discos IBM
    Estructura lógica[editar]
    Dentro del disco se encuentran:

    El registro de arranque principal (Master Boot Record, MBR), en el bloque o sector de arranque, que contiene la tabla de particiones.
    Las particiones de disco, necesarias para poder colocar los sistemas de archivos.
    Estructura física[editar]

    Componentes de una unidad de disco duro. De izquierda a derecha, fila superior: tapa, carcasa, plato, eje; fila inferior: espuma aislante, circuito impreso de control, cabezal de lectura/escritura, actuador e imán, tornillos.
    Dentro de la unidad de disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 o 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos.

    Cada plato posee dos “ojos”, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene dos cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay ocho cabezas para leer cuatro platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Los cabezales de lectura/escritura no tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre los cabezales y los platos cuando los discos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).

    Direccionamiento[editar]

    Cilindro, Cabezal y Sector.

    Estructura de disco magnético:
    A es una pista del disco (roja ),
    B es un sector geométrico (azul ),
    C es un sector de una pista (magenta ),
    D es un grupo de sectores o clúster (verde ).
    Hay varios conceptos para referirse a zonas del disco:

    Plato: cada uno de los discos que hay dentro de la unidad de disco duro.
    Cara: cada uno de los dos lados de un plato.
    Cabezal: número de cabeza o cabezal por cada cara.
    Pista: una circunferencia dentro de una cara; la pista cero (0) está en el borde exterior.
    Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
    Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque la IDEMA2 ha creado un comité que impulsa llevarlo a 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología grabación de bits por zonas (Zone Bit Recording, ZBR) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro. Así las pistas se agrupan en zonas de pistas de igual cantidad de sectores. Cuanto más lejos del centro de cada plato se encuentra una zona, esta contiene una mayor cantidad de sectores en sus pistas. Además mediante ZBR, cuando se leen sectores de cilindros más externos la tasa de transferencia de bits por segundo es mayor; por tener la misma velocidad angular que cilindros internos pero mayor cantidad de sectores.3
    Sector geométrico: son los sectores contiguos pero de pistas diferentes.
    Clúster: es un conjunto contiguo de sectores.
    El primer sistema de direccionamiento que se usó fue el Cilindro-Cabezal-Sector (Cylinder-Head-Sector, CHS), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo, que actualmente se usa: direccionamiento de bloques lógicos (Logical Block Addressing, LBA), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número.

    Factor de Forma[editar]

    Seis unidades de disco duro con carcasas abiertas mostrando platos y cabezales; 8, 5¼, 3½, 2½, 1⅛ y 1 pulgadas de diámetro de los discos que representan.
    El más temprano "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD "floppy-disk drives" (en inglés).

    La compatibilidad del "factor de forma" continua siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.

    8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
    En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con la interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7 mm).
    5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.
    Este es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90'.
    3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
    Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4 mm (1 pulgada), o "low-profile" que es usado en la mayoría de los discos duros.
    2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
    Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc...) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
    1,8 pulgadas: 54×8×71 mm.
    Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2 GB a 5 GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
    1 pulgadas: 42,8×5×36,4 mm.
    Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
    0,85 pulgadas: 24×5×32 mm.
    Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4 GB (MK4001MTD) y 8 GB (MK8003MTD) 5 y tienen el récord Guinness del disco duro más pequeño.
    Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las memorias flash, aunque Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.

    El nombre de "pulgada" para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.

    Características de un disco duro[editar]
    Las características que se deben tener en cuenta en un disco duro son:

    Tiempo medio de acceso: tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
    Tiempo medio de búsqueda: tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
    Tiempo de lectura/escritura: tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
    Latencia media: tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
    Velocidad de rotación: Es la velocidad a la que gira el disco duro, más exactamente, la velocidad a la que giran el/los platos del disco, que es donde se almacenan magnéticamente los datos. La regla es: a mayor velocidad de rotación, más alta será la transferencia de datos, pero también mayor será el ruido y mayor será el calor generado por el disco duro. Se mide en número revoluciones por minuto (RPM). No debe comprarse un disco duro IDE de menos de 5400 RPM (ya hay discos IDE de 7200 RPM), a menos que te lo den a un muy buen precio, ni un disco SCSI de menos de 7200 RPM (los hay de 10.000 RPM). Una velocidad de 5400 RPM permitirá una transferencia entre 10MB y 16MB por segundo con los datos que están en la parte exterior del cilindro o plato, algo menos en el interior.revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
    Tasa de transferencia: velocidad a la que puede transferir la información a la computadora una vez que la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
    Otras características son:

    Caché de pista: es una memoria tipo flash dentro del disco duro.
    Interfaz: medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, Serial Attached SCSI
    Landz: zona sobre las que aparcan las cabezas una vez se apaga la computadora.
    Conectores[editar]

    Conector ATA hembra en un cable cinta plano.

    Dos conectores ATA macho en placa base.
    Tipos de conexión de datos[editar]
    Las unidades de discos duros pueden tener distintos tipos de conexión o interfaces de datos con la placa base. Cada unidad de disco rígido puede tener una de las siguientes opciones:

    IDE
    SATA
    SCSI
    SAS
    Cuando se conecta indirectamente con la placa base (por ejemplo: a través del puerto USB) se denomina disco duro portátil o externo.

    IDE, ATA o PATA[editar]
    Artículo principal: Integrated Drive Electronics
    Véanse también: Conector IDC y Cable cinta.
    La interfaz ATA (Advanced Technology Attachment) o PATA (Parallel ATA), originalmente conocido como IDE (Integrated Device Electronics o Integrated Drive Electronics), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) o unidades de discos ópticos como lectoras o grabadoras de CD y DVD.

    Hasta el 2004, aproximadamente, fue el estándar principal por su versatilidad y asequibilidad.

    Son planos, anchos y alargados.

    SATA[editar]
    Artículo principal: Serial ATA
    Serial ATA o SATA es el más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos.

    Notablemente más rápido y eficiente que IDE.

    Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente (hot plug).

    Existen tres versiones:

    SATA 1 con velocidad de transferencia de hasta 150 MB/s (descatalogado),
    SATA 2 de hasta 300 MB/s, el más extendido en la actualidad;
    SATA 3 de hasta 600 MB/s el cual se está empezando a hacer lugar en el mercado.
    SCSI[editar]
    Artículo principal: Small Computer System Interface
    Las interfaces Small Computer System Interface (SCSI) son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación.

    Se presentan bajo tres especificaciones:

    SCSI Estándar (Standard SCSI),
    SCSI Rápido (Fast SCSI) y
    SCSI Ancho-Rápido (Fast-Wide SCSI).
    Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbit/s en los discos SCSI Estándares, los 10 Mbit/s en los discos SCSI Rápidos y los 20 Mbit/s en los discos SCSI Anchos-Rápidos (SCSI-2).

    Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.

    SAS[editar]
    Artículo principal: Serial Attached SCSI
    Serial Attached SCSI (SAS) es la interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión rápidamente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI.

    Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.

    Fuente de alimentación[editar]
    Véanse también: Fuente de alimentación y Molex.
    Funcionamiento mecánico[editar]
    Un disco duro suele tener:

    Platos, en donde se graban los datos.
    Cabezal de lectura/escritura.
    Motor, que hace girar los platos.
    Electroimán, que mueve el cabezal.
    Circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché.
    Bolsita desecante (gel de sílice), para evitar la humedad.
    Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire.
    Integridad[editar]
    Debido a la distancia extremadamente pequeña entre los cabezales y la superficie del disco, cualquier contaminación de los cabezales de lectura/escritura o las fuentes puede dar lugar a un accidente en los cabezales, un fallo del disco en el que el cabezal raya la superficie de la fuente, a menudo moliendo la fina película magnética y causando la pérdida de datos. Estos accidentes pueden ser causados por un fallo electrónico, un repentino corte en el suministro eléctrico, golpes físicos, el desgaste, la corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.

    El eje del sistema del disco duro depende de la presión del aire dentro del recinto para sostener los cabezales y su correcta altura mientras el disco gira. Un disco duro requiere un cierto rango de presiones de aire para funcionar correctamente. La conexión al entorno exterior y la presión se produce a través de un pequeño agujero en el recinto (cerca de 0,5 mm de diámetro) normalmente con un filtro en su interior (filtro de respiración, ver abajo). Si la presión del aire es demasiado baja, entonces no hay suficiente impulso para el cabezal, que se acerca demasiado al disco, y se da el riesgo de fallos y pérdidas de datos. Son necesarios discos fabricados especialmente para operaciones de gran altitud, sobre 3.000 m. Hay que tener en cuenta que los aviones modernos tienen una cabina presurizada cuya presión interior equivale normalmente a una altitud de 2.600 m como máximo. Por lo tanto los discos duros ordinarios se pueden usar de manera segura en los vuelos. Los discos modernos incluyen sensores de temperatura y se ajustan a las condiciones del entorno. Los agujeros de ventilación se pueden ver en todos los discos (normalmente tienen una pegatina a su lado que advierte al usuario de no cubrir el agujero). El aire dentro del disco operativo está en constante movimiento siendo barrido por la fricción del plato. Este aire pasa a través de un filtro de recirculación interna para quitar cualquier contaminante que se hubiera quedado de su fabricación, alguna partícula o componente químico que de alguna forma hubiera entrado en el recinto, y cualquier partícula generada en una operación normal. Una humedad muy alta durante un periodo largo puede corroer los cabezales y los platos.

    Para los cabezales resistentes al magnetismo grandes (GMR) en particular, un incidente minoritario debido a la contaminación (que no se disipa la superficie magnética del disco) llega a dar lugar a un sobrecalentamiento temporal en el cabezal, debido a la fricción con la superficie del disco, y puede hacer que los datos no se puedan leer durante un periodo corto de tiempo hasta que la temperatura del cabezal se estabilice (también conocido como “aspereza térmica”, un problema que en parte puede ser tratado con el filtro electrónico apropiado de la señal de lectura).

    Los componentes electrónicos del disco duro controlan el movimiento del accionador y la rotación del disco, y realiza lecturas y escrituras necesitadas por el controlador de disco. El firmware de los discos modernos es capaz de programar lecturas y escrituras de forma eficiente en la superficie de los discos y de reasignar sectores que hayan fallado.

    Mantenimiento y cuidado[editar]
    Los discos duros también necesitan cuidado, siga las siguientes instrucciones para evitar la pérdida de datos y evitar que el disco duro quede inservible:

    No quitar la etiqueta ligeramente plateada que se encuentra a los lados y/o algunas veces en la parte frontal, esto puede causar que entre polvo y raye el disco, asimismo el polvo que pueda contener electricidad puede mover los datos y causar daños.
    No tapar los agujeros pequeños, ya que son un filtro de aire y puede causar sobrecalentamiento.
    Realizar periódicamente copias de seguridad en discos DVD, Blu-ray o en un disco duro externo de la información importante, eventos como apagones o ataques de virus pueden dañar el disco duro o la información, si ocurre un apagón desconectar el ordenador. Si se usa un servicio de alojamiento de archivos, no debe ser la única opción ni se debe guardar ahí información delicada o crítica, pues el servicio puede fallar, ser clausurado o atacado.
    Se recomienda crear al menos dos particiones: Una para el sistema operativo y los programas y otra para los datos del usuario. De esta forma se pueden facilitar la copia de seguridad y la restauración, al posibilitar retroceder o reinstalar completamente el sistema operativo sin perder los datos personales en el proceso.
    Optimizar (desfragmentar) el disco duro regularmente usando la herramienta incluida en el sistema operativo o un programa de otro fabricante para reducir el desgaste, facilitar la recuperación en caso de un problema, y mantener una buena velocidad de respuesta. Se recomienda una frecuencia de cuatro a seis meses dependiendo del uso.
    Descargar y usar un programa que lea los datos de los sensores del disco duro (S.M.A.R.T.), para vigilar la condición del disco duro. Si indica que está en peligro, copiar la información importante y reemplazar el disco duro lo más pronto posible para evitar la pérdida de información.
    Evitar que el disco sufra golpes físicos, especialmente durante su funcionamiento. Los circuitos, cabezales y discos pueden dañarse.
    Si el disco duro presenta problemas de confiabilidad, un funcionamiento anormalmente lento o aparecen sin razón aparente archivos dañados o ilegibles, analizarlo con un comprobador de disco. También se recomienda realizar una comprobación de rutina cada cierta cantidad de meses para detectar errores menores y corregirlos antes de que se agraven.
    Galería de imágenes[editar]

    Disco duro de una laptop.


    Unidad de disco duro de 2½" que está abierto, exponiendo su funcionamiento interno. Disco duro Western Digital Scorpio Blue de 500 GB con conexiones SATA; es común en computadoras portátiles.


    Interior de un disco duro; se aprecia la superficie de un plato y el cabezal de lectura/escritura retraído, a la izquierda.


    Interior de la unidad de disco duro; se aprecian dos platos con sus respectivos cabezales.


    Cabezal del disco duro.


    Cabezal de disco duro IBM sobre el plato del disco.


    Pila de cabezales de disco duro Western Digital (WD2500JS-00MHB0).


    Un peine, 3 brazos, 6 cabezales, 3 platos.


    Cabeza de disco duro sobre plato rayado. Rayaduras en el plato producidas por golpes mientras la unidad estaba en funcionamiento.


    Cables IDE, con 40 pines (izquierda) y 80 pines (derecha).


    Cable cinta para conectar la placa base con dos dispositivos IDE (p.e.: disco rígido o lectora de CD).


    Comparación de cables ATA de 40 y 80 pines y SATA.


    Zócalo con canal de indexación, conector por desplazamiento del aislante).


    Partes y conexiones de un disco rígido SATA.


    Cable delgado SATA utilizado para conectar una delgada unidad óptica a la interfaz SATA poder obtener de la placa base, y conector Molex para fuente de alimentación.
    Presente y futuro[editar]
    Actualmente la nueva generación de discos duros utilizan la grabación perpendicular (PMR), la cual permite mayor densidad de almacenamiento, pero con la novedosa Shingled magnetic recording (SMR) se espera llegar aún mas lejos.

    También existen discos llamados "Ecológicos" (GP – Green Power), los cuales hacen un uso más eficiente de la energía.

    Comparativa de SSD y HDD[editar]
    Artículo principal: Unidad de estado sólido
    Las unidades de estado sólido tienen el mismo uso que los discos duros y emplean las mismas interfaces, pero no están formadas por discos mecánicos, sino por memorias de circuitos integrados para almacenar la información. El uso de esta clase de dispositivos anteriormente se limitaba a las supercomputadoras, por su elevado precio, aunque ahora son muchísimo más asequibles para el mercado doméstico.4

    La unidad de estado sólido o SSD (acrónimo inglés de Solid-State Drive) es el dispositivo de almacenamiento de datos que puede estar construido con memoria no volátil o con memoria volátil. Las no volátiles son unidades de estado sólido que como dispositivos electrónicos, están construidos en la actualidad con chips de memoria flash. No son discos, pero juegan el mismo papel a efectos prácticos aportando ventajas pero también inconvenientes tecnológicos como la corrupción de las celdas de memoria con cada escritura, lo que acorta la vida útil de estos dispositivos y aumenta el riesgo de corrupción de los datos.5 No obstante, la industria está empezando a vislumbrar en el mercado la posibilidad de que en el futuro ese tipo de unidades de estado sólido termine sustituyendo al disco duro para implementar el manejo de memorias no volátiles en el campo de la ingeniería informática.

    Esos soportes son muy rápidos ya que no tienen partes móviles o mecánicas y consumen menos energía. Todos esto les hace muy fiables y físicamente duraderos. Sin embargo, su costo por GB es aún muy elevado respecto al mismo coste de GB en un formato de tecnología de HDD, siendo un índice muy importante cuando hablamos de las altas necesidades de almacenamiento que hoy se miden en orden de Terabytes.6

    A pesar de ello, la industria apuesta por esta vía de solución tecnológica para el consumo doméstico7 aunque se ha de considerar que estos sistemas han de ser integrados correctamente8 tal y como se está realizando en el campo de la alta computación.9 Unido a la reducción progresiva de costes, quizás esa tecnología recorra el camino de aplicarse como método general de archivos de datos informáticos energéticamente respetuosos con el medio natural si optimiza su función lógica dentro de los sistemas operativos actuales.10

    Discos que no son discos[editar]
    Las unidades de estado sólido han sido categorizadas repetidas veces como "discos", cuando es totalmente incorrecto denominarlas así, porque a diferencia de sus predecesores, sus datos no se almacenan sobre superficies cilíndricas ni platos. Esta confusión conlleva habitualmente a creer, erróneamente, que SSD significa Solid State Disk, en vez del correcto significado: Solid State Drive, es decir, unidad de estado sólido o dispositivo de estado sólido.

    Unidades híbridas[editar]
    Las unidades híbridas son aquellas que combinan las ventajas de las unidades mecánicas convencionales con las de las unidades de estado sólido. Consisten en acoplar un conjunto de unidades de memoria flash dentro de la unidad mecánica, utilizando el área de estado sólido para el almacenamiento dinámico de datos de uso frecuente (determinado por el software de la unidad) y el área mecánica para el almacenamiento masivo de datos. Con esto se logra un rendimiento cercano al de unidades de estado sólido a un costo sustancialmente menor. En 2012, Seagate ofreció el modelo "Momentus XT", con esta tecnología.11

    Fabricantes[editar]

    Un Western Digital de 3,5 pulgadas con 250 GB y SATA HDD.

    Un Seagate de 3,5 pulgadas y 1 TB con SATA HDD.
    Los recursos tecnológicos y el saber hacer requeridos para el desarrollo y la producción de discos modernos implica que desde 2007, más del 98 % de los discos duros del mundo son fabricados por un conjunto de grandes empresas: Seagate (que ahora es propietaria de Maxtor y Quantum), Western Digital (propietaria de Hitachi, a la que a su vez fue propietaria de la antigua división de fabricación de discos de IBM) y Fujitsu, que sigue haciendo discos portátiles y discos de servidores, pero dejó de hacer discos para computadoras de escritorio en 2001, y el resto lo vendió a Western Digital. Toshiba es uno de los principales fabricantes de discos duros para portátiles de 2,5 pulgadas y 1,8 pulgadas. TrekStor es un fabricante alemán que en 2009 tuvo problemas de insolvencia, pero que actualmente sigue en activo. ExcelStor es un pequeño fabricante chino de discos duros.

    Decenas de exfabricantes de discos duros han terminado con sus empresas fusionadas o han cerrado sus divisiones de discos duros, a medida que la capacidad de los dispositivos y la demanda de los productos aumentó, los beneficios eran menores y el mercado sufrió una significativa consolidación a finales de los años 1980 y finales de los años 1990. La primera víctima en el mercado de las PC fue Computer Memories Inc.; después de un incidente con 20 MB defectuosos en discos en 1985, la reputación de CMI nunca se recuperó, y salieron del mercado de los discos duros en 1987. Otro notable fracaso fue el de MiniScribe, quien quebró en 1990: después se descubrió que tenía en marcha un fraude e inflaba el número de ventas durante varios años. Otras muchas pequeñas compañías (como Kalok, Microscience, LaPine, Areal, Priam y PrairieTek) tampoco sobrevivieron a la expulsión, y habían desaparecido para 1993; Micropolis fue capaz de aguantar hasta 1997, y JTS, un recién llegado a escena, duró solamente unos años y desapareció hacia 1999, aunque después intentó fabricar discos duros en India. Su vuelta a la fama se debió a la creación de un nuevo formato de tamaño de 3” para portátiles. Quantum e Integral también investigaron el formato de 3”, pero finalmente se dieron por vencidos. Rodime fue también un importante fabricante durante la década de 1980, pero dejó de hacer discos en la década de 1990 en medio de la reestructuración y ahora se concentra en la tecnología de la concesión de licencias; tienen varias patentes relacionadas con el formato de 3,5“.

    1988: Tandon vendió su división de fabricación de discos duros a Western Digital, que era un renombrado diseñador de controladores.
    1989: Seagate compró el negocio de discos de alta calidad de Control Data, como parte del abandono de Control Data en la creación de hardware.
    1990: Maxtor compró MiniScribe que estaba en bancarrota, haciéndolo el núcleo de su división de discos de gama baja.
    1994: Quantum compró la división de almacenamiento de Digital Equipment Corporation otorgando al usuario una gama de discos de alta calidad llamada ProDrive, igual que la gama tape drive de Digital Linear Tape.
    1995: Conner Peripherals, que fue fundada por uno de los cofundadores de Seagate junto con personal de MiniScribe, anunciaron un fusión con Seagate, la cual se completó a principios de 1996.
    1996: JTS se fusionó con Atari, permitiendo a JTS llevar a producción su gama de discos. Atari fue vendida a Hasbro en 1998, mientras que JTS sufrió una bancarrota en 1999.
    2000: Quantum vendió su división de discos a Maxtor para concentrarse en las unidades de cintas y los equipos de respaldo.
    2003: siguiendo la controversia en los fallos masivos en su modelo Deskstar 75GXP, Pioneer IBM vendió la mayor parte de su división de discos a Hitachi, renombrándose como Hitachi Global Storage Technologies, Hitachi GST.
    2003: Western Digital compró Read-Rite Corp., quien producía los cabezales utilizados en los discos duros, por 95,4 millones de dólares en metálico.
    2005: Seagate y Maxtor anuncian un acuerdo bajo el que Seagate adquiriría todo el stock de Maxtor. Esta adquisición fue aprobada por los cuerpos regulatorios, y cerrada el 19 de mayo de 2006.
    2007: Western Digital adquiere Komag U.S.A., un fabricante del material que recubre los platos de los discos duros.
    2009: Toshiba adquiere la división de HDD de Fujitsu y TrekStor se declara en bancarrota, aunque ese mismo año consiguen un nuevo inversor para mantener la empresa a flote.
    2011: Western Digital adquiere Hitachi GST y Seagate compra la división de HDD de Samsung.
    2014: Seagate anuncia el primer disco duro de 8 TB en el mercado de consumo general, con formato de 3,5 pulgadas y conectividad tipo SATA III a 6 Gbps, compatible con computadoras de escritorio.12
    Véase también[editar]
    Fragmentación de un sistema de ficheros
    Desfragmentación
    Disco duro portátil
    Eje (disco duro)
    Formato de disco
    Jumper (informática)
    Partición de disco
    Periférico (informática)
    Plato (disco duro)
    Registro de arranque principal
    Sistema de archivos
    Tabla de particiones GUID
    Unidad de estado sólido
    Características de rendimiento de disco duro
    Fabricantes de discos duros[editar]
    Seagate
    Toshiba
    Verbatim
    Western Digital
    Samsung
    Referencias[editar]
    ↑ Saltar a: a b C. Dennis Mee, Eric D. Daniel (1996). McGraw-Hill, ed. Magnetic Storage Handbook 2nd Ed.. ISBN 0-07-041275-8.
    Volver arriba ↑ http://www.idema.org/
    Volver arriba ↑ http://www.youbioit.com/es/article/s...discos-rigidos Cómo funcionan los discos rígidos
    Volver arriba ↑ Toshiba America Electronic Components, Inc. «Solid State Drives Memory Products». Consultado el 17 de julio de 2009.
    Volver arriba ↑ http://javierin.com/2014/06/21/durabilidad-de-los-ssd/ ¿Cuánto dura un SSD? ¿Qué determina la durabilidad de los SSD?
    Volver arriba ↑ http://www.tuexpertoit.com/2011/12/2...ros-se-reduce/ Comparativas de precios SSD versus disco duro.
    Volver arriba ↑ http://alt1040.com/2010/11/discos-de...n=Relacionados Dispositivis de estado sólido (SSD) o cómo hacer que tu computadora sea realmente rápida.
    Volver arriba ↑ http://sololinex.wordpress.com/2008/...ideo/#more-755 Comparativa entre disco duro y SSD en vídeo.
    Volver arriba ↑ http://web.archive.org/web/http://ww...el_mundo/30931 Presentan la primera supercomputadora Flash del mundo.
    Volver arriba ↑ http://www.orlandoalonzo.com.mx/tecn...mo-de-energia/ SSD: la verdad sobre el consumo de energía.
    Volver arriba ↑ http://www.seagate.com/www/es-es/pro...ps/laptop-hdd/
    Volver arriba ↑ Oyanedel, Juan Pablo (27 de agosto de 2014). «Seagate estrena el primer disco duro de 8 TB en el mercado». Consultado el 29 de agosto de 2014.
    Bibliografía[editar]
    Ciriaco García de Celis (1994). «12.7: El disco duro del AT (IDE, MFM, BUS LOCAL).». El universo digital del IBM PC, AT y PS/2 (4ª edición). Facultad de Ciencias de Valladolid: Grupo Universitario de Informática.
    Enlaces externos[editar]
    Wikimedia Commons alberga contenido multimedia sobre Unidad de disco duro.
    Wikilibros alberga un libro o manual sobre Mantenimiento y Montaje de Equipos Informáticos/Tema 3/Almacenamiento magnético.
    Categorías: Discos durosHardwareAlmacenamiento informáticoDispositivos de almacenamiento
    Menú de navegación
    No has iniciado sesiónDiscusiónContribucionesCrear una cuentaAccederArtículoDiscusiónLeerEditarVer historialBuscar

    Buscar en Wikipedia
    Ir
    Portada
    Portal de la comunidad
    Actualidad
    Cambios recientes
    Páginas nuevas
    Página aleatoria
    Ayuda
    Donaciones
    Notificar un error
    Imprimir/exportar
    Crear un libro
    Descargar como PDF
    Versión para imprimir
    En otros proyectos
    Wikimedia Commons
    Herramientas
    Lo que enlaza aquí
    Cambios en enlazadas
    Subir archivo
    Páginas especiales
    Enlace permanente
    Información de la página
    Elemento de Wikidata
    Citar esta página
    Otros proyectos
    Commons
    Wikilibros
    En otros idiomas
    Afrikaans
    Asturianu
    Català
    English
    Euskara
    Galego
    हिन्दी
    Татарча/tatarça
    中文
    100 más
    Editar enlaces
    Esta página fue modificada por última vez el 2 abr 2017 a las 15:30.
    El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros términos de uso y nuestra política de privacidad.
    Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.

  4. #4
    ForoParalelo: Miembro Avatar de benlloch35
    Registro
    09 feb, 17
    Mensajes
    210
    Me gusta (Dados)
    9
    Me gusta (Recibidos)
    12
    Cita Iniciado por Tanatos Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    Demasiado complejo para este foro
    hablas en serio?

  5. #5
    Paramiembro: Forista Avatar de Suspiciousman
    Registro
    29 may, 14
    Ubicación
    Páramo del tormento Nº 32
    Mensajes
    57,680
    Me gusta (Dados)
    245
    Me gusta (Recibidos)
    19429
    Cita Iniciado por benlloch35 Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    Se que el disco duro funciona de manera binaria, con polaridad positiva y polaridad negativa.
    Cada trocito puede tener polaridad negativa o positiva. ¿que seria el trocito? Es decir, como seria un disco duro? entre trocitos hay algun espacio?
    es decir, entre os trozos hay algo que lo separa?

    explicame como va el tema, por favor, que tengo eld isco duro dañado y quiero aprender primero qué es el disco duro para luego entender en que consiste el daño que hay.

    cuando se dice que se divide en sectores, a que se refiere?
    Un disco duro se compone de pistas y sectores, cada sector es un contenedor en el que puede haber contenidos varios archivos /fragmentos de archivo (depende del tamaño del bloque), los datos de cada bloque o sector se relacionan unos con otros mediante asignación enlazada, esto quiere decir que un sector que tiene x número de archivos y fragmentos contendrá también información sobre el siguiente sector donde se encuentren los archivos y fragmentos de archivo que falten para completarse y así sucesivamente.

    Si peta un sector o grupo de sectores donde se contenían x archivos o fragmentos de archivos esta asignación junto al contenido de dichos sectores se pierde / corrompe, por lo que el disco tiene que enlazar de nuevo ese tramo con el siguiente sector válido. El resultado de esto es que los archivos referentes a esas posiciones dañadas desaparecen o quedan ilegibles.

    Cuando un disco detecta un sector con problemas lo que hace es reasignar el contenido a sectores en reserva (un disco suele tener x cantidad de sectores en reserva para operaciones de reasignación), si la reasignación se realiza con éxito el enlace cambia para dirigirse a esos nuevos sectores y luego continuar con la asignación normal.

    Cuando no quedan sectores para reasignar y el sector con problemas se vuelve ilegible el disco simplemente anula el tramo afectado hasta el siguiente sector legible, con la consiguiente perdida de información y riesgo de corrupción de sistema de archivos.

    Simple como beberse un cuba libre un sábado por la noche.
    Última edición por Suspiciousman; 05/04/2017 a las 17:06

  6. #6
    ForoParalelo: Miembro Avatar de benlloch35
    Registro
    09 feb, 17
    Mensajes
    210
    Me gusta (Dados)
    9
    Me gusta (Recibidos)
    12
    Cita Iniciado por Suspiciousman Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    Un disco duro se compone de pistas y sectores, cada sector es un contenedor en el que puede haber contenidos varios archivos /fragmentos de archivo (depende del tamaño del bloque), los datos de cada bloque o sector se relacionan unos con otros mediante asignación enlazada, esto quiere decir que un sector que tiene x número de archivos y fragmentos contendrá también información sobre el siguiente sector donde se encuentren los archivos y fragmentos de archivo que falten para completarse y así sucesivamente.

    Si peta un sector o grupo de sectores donde se contenían x archivos o fragmentos de archivos esta asignación junto al contenido de dichos sectores se pierde / corrompe, por lo que el disco tiene que enlazar de nuevo ese tramo con el siguiente sector válido. El resultado de esto es que los archivos referentes a esas posiciones dañadas desaparecen o quedan ilegibles.

    Cuando un disco detecta un sector con problemas lo que hace es reasignar el contenido a sectores en reserva (un disco suele tener x cantidad de sectores en reserva para operaciones de reasignación), si la reasignación se realiza con éxito el enlace cambia para dirigirse a esos nuevos sectores y luego continuar con la asignación normal.

    Cuando no quedan sectores para reasignar y el sector con problemas se vuelve ilegible el disco simplemente anula el tramo afectado hasta el siguiente sector legible, con la consiguiente perdida de información y riesgo de corrupción de sistema de archivos.

    Simple como beberse un cuba libre un sábado por la noche.
    gracias, pero quiero saber lo de los trocitos. Si un disco duro guarda la informacion de manera binaria, quiere decir que tendrá troitos y en cada trocito solo cabe o bien polaridad+ o polaridad-
    ¿cual es el nombre tecnico de lo que yo llamo trocito?

    gracias

  7. #7
    Paramiembro: Forista Avatar de Suspiciousman
    Registro
    29 may, 14
    Ubicación
    Páramo del tormento Nº 32
    Mensajes
    57,680
    Me gusta (Dados)
    245
    Me gusta (Recibidos)
    19429
    Cita Iniciado por benlloch35 Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    gracias, pero quiero saber lo de los trocitos. Si un disco duro guarda la informacion de manera binaria, quiere decir que tendrá troitos y en cada trocito solo cabe o bien polaridad+ o polaridad-
    ¿cual es el nombre tecnico de lo que yo llamo trocito?

    gracias
    A eso se le llaman celdas, posiciones magnéticas que la cabeza lectora de cada brazo asignado magnetiza de determinada manera.

  8. #8
    ForoParalelo: Miembro Avatar de benlloch35
    Registro
    09 feb, 17
    Mensajes
    210
    Me gusta (Dados)
    9
    Me gusta (Recibidos)
    12
    Cita Iniciado por Suspiciousman Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    A eso se le llaman celdas, posiciones magnéticas que la cabeza lectora de cada brazo asignado magnetiza de determinada manera.
    vale, entonces digamos que la celda es la unidad minima,no?
    todas las celdas de un disco duro son iguales?
    es que no entiendo que es un sector o pista, si luego todas las celdas son iguales.
    gracias

  9. #9
    Paramiembro: Forista Avatar de Suspiciousman
    Registro
    29 may, 14
    Ubicación
    Páramo del tormento Nº 32
    Mensajes
    57,680
    Me gusta (Dados)
    245
    Me gusta (Recibidos)
    19429
    Todas las celdas de la superficie de cada plato que compone la pila del disco son iguales, los sectores son asignaciones de un determinado número de estas celdas en bloque y las pistas puedes interpretarlas como semicírculos formados por una línea de sectores, dependiendo de la arquitectura del disco un plato tendrá mas o menos pistas.

    No te olvides de romperle una silla a tu profesor en la espalda por tenerte haciendo trabajos de investigación fútiles en vez de explicarte todo esto.
    Última edición por Suspiciousman; 08/04/2017 a las 12:23

  10. #10
    Usuario hostil 卐☠ Avatar de SrChristiamಠ_ರೃ
    Registro
    28 may, 13
    Ubicación
    en mi casa
    Mensajes
    13,304
    Me gusta (Dados)
    7241
    Me gusta (Recibidos)
    3836


    ahi tienes lo que son los trocitos

  11. #11
    ForoParalelo: Miembro Avatar de benlloch35
    Registro
    09 feb, 17
    Mensajes
    210
    Me gusta (Dados)
    9
    Me gusta (Recibidos)
    12
    Cita Iniciado por Suspiciousman Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    Todas las celdas de la superficie de cada plato que compone la pila del disco son iguales, los sectores son asignaciones de un determinado número de estas celdas en bloque y las pistas puedes interpretarlas como semicírculos formados por una línea de sectores, dependiendo de la arquitectura del disco un plato tendrá mas o menos pistas.

    No te olvides de romperle una silla a tu profesor en la espalda por tenerte haciendo trabajos de investigación fútiles en vez de explicarte todo esto.
    gracias, al no citarme no me enteré.
    Celda es lo minimo,no?
    mi duda es si fisicamente se distinguen los bloques, es decir, si hay alguna barrera fisica que los separa (quiza algun espacio entre medio) o no?
    si una celda se estropea/rompe, ¿todo el bloque se va a la mierda o no?
    este tema esta relacionado con eso de que un archivo pequeño tenga dos tamalos cuando le das a propiedades: "tamaño" y "tamaño en disco"

  12. #12
    Paramiembro: Forista Avatar de Suspiciousman
    Registro
    29 may, 14
    Ubicación
    Páramo del tormento Nº 32
    Mensajes
    57,680
    Me gusta (Dados)
    245
    Me gusta (Recibidos)
    19429
    Cita Iniciado por benlloch35 Ver mensaje
    El mensaje está oculto porque el usuario está en tu lista de ignorados.
    gracias, al no citarme no me enteré.
    Celda es lo minimo,no?
    mi duda es si fisicamente se distinguen los bloques, es decir, si hay alguna barrera fisica que los separa (quiza algun espacio entre medio) o no?
    si una celda se estropea/rompe, ¿todo el bloque se va a la mierda o no?
    este tema esta relacionado con eso de que un archivo pequeño tenga dos tamalos cuando le das a propiedades: "tamaño" y "tamaño en disco"
    La celda es lo mínimo.

    Los sectores no se pueden diferenciar físicamente mirando la superficie de los platos.

    Si un número determinado de celdas correspondientes a un sector falla este se descarta, los sectores catalogados como "lentos" en exámenes de superficie son aquellos en los que hay una varias celdas que no se polarizan como deberían o tardan mas en hacerlo que el resto, si se llega a x numero de celdas con problemas el sector entero se da como malo.

Permisos de publicación

  • No puedes crear nuevos temas
  • No puedes responder temas
  • No puedes subir archivos adjuntos
  • No puedes editar tus mensajes
  •